Abstract
Conifers growing in temperate forests utilize sustained forms of thermal dissipation during winter to protect the photosynthetic apparatus from damage, which can be monitored via pronounced reductions in photochemical efficiency (Fv/Fm) during winter. Eastern white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss) are known to recover from winter stress at different rates, with pine recovering more slowly than spruce, suggesting different mechanisms for sustained dissipation in these species. Our objectives were to monitor pine and spruce throughout spring recovery in order to provide insights into key mechanisms for sustained dissipation in both species. We measured chlorophyll fluorescence, pigments, and abundance and phosphorylation status of key photosynthetic proteins. We found that both species rely on two forms of sustained dissipation involving retention of high amounts of antheraxanthin (A)+zeaxanthin (Z), one that is very slowly reversible and temperature independent and one that is more dynamic and occurs only on subzero days. Differences in protein abundance suggest that spruce, but not pine, likely upregulates cyclic or alternative pathways of electron transport involving the cytochrome b6f complex and photosystem I (PSI). Both species show an increased sustained phosphorylation of the D1 protein on subzero days, and spruce additionally shows dramatic increases in the sustained phosphorylation of light-harvesting complex II (LHCII) and other PSII core proteins on subzero days only, suggesting that a mechanism of sustained dissipation that is temperature dependent requires sustained phosphorylation of photosynthetic proteins in spruce, possibly allowing for direct energy transfer from PSII to PSI as a mechanism of photoprotection. The data suggest differences in strategy among conifers in mechanisms of sustained thermal dissipation in response to winter stress. Additionally, the flexible induction of sustained A+Z and phosphorylation of photosynthetic proteins in response to subzero temperatures during spring recovery seem to be important in providing photoprotection during transitional periods with high temperature fluctuation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.