Abstract
AbstractHigh-temperature oxidation behavior of conventionally cast and additively manufactured (AM) Co-base alloy MAR-M-509 was compared in the present study. The specimens were exposed in air at 1000 °C and characterized by means of scanning electron microscopy equipped with energy/wavelength dispersive x-ray spectroscopy (EDX/WDX) and electron backscatter diffraction as well as transmission electron microscopy. Substantial differences in the oxidation processes of two alloy versions were observed. Faster oxidation of the cast alloy was mainly induced by (1) oxidation of coarse primary carbides, (2) internal oxidation and nitridation processes and (3) incorporation of other alloy constituents (e.g., Co, Ni, W) into the Cr-oxide scale. AM specimens, in contrast, formed a more homogeneous, thinner and better adherent external oxide scale. The results are discussed in terms of differences in the chemical composition and alloy microstructure, including the grain size distribution in the material and the morphology of the strengthening precipitate phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.