Abstract

The intrinsic innervation of the developing gut has long been a subject of investigation, but little is known regarding that of the embryonic cloaca. The cloaca, like the rest of the gastrointestinal tract, is intrinsically innervated by the enteric nervous system. Nitrergic neurons and fibres make up a large part of this system, thus, their distribution provides us with a useful insight into its development. Cloacal and colorectal tissue specimens were removed from chick embryos at embryonic days 11 (E11), E15 and E19. NADPH-diaphorase (NADPH-d) histochemistry was carried out using whole mount tissue preparations. Ganglia density, the number of NADPH-d-positive cells per ganglia in the myenteric plexus and cell size were calculated and statistical analysis was performed to compare both regions of the gut (P<0.001). There were significant differences in the ganglia density in the cloaca compared to the colorectum at E11 (P<0.05) and E15 (P<0.01), with the colorectum having a much denser network. In both the cloaca and the colorectum, ganglia density significantly decreased with age (P<0.001), while significant differences were observed in the number of NADPH-d-positive cells per ganglia in both regions through development. Total cell size was similar in both the cloaca and colorectum at each stage and increased in both regions through development, predominantly due to an increase in the cytoplasm. Results reveal striking differences in innervation between the chick embryo cloaca and colorectum. The sparse network of innervation evident within the cloaca in contrast to the dense network within the colorectum emphasizes the individuality of both regions. These results highlight the need for a further in-depth analysis of the enteric nervous system's development within the embryonic cloaca.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.