Abstract

Zinc (Zn) is an essential micronutrient for plants, but it is toxic beyond a certain threshold. Populus alba (L.) ‘Villafranca’ clone is known for its good tolerance to high Zn concentration compared to other poplar species. A line of this species overexpressing the tonoplast intrinsic aquaporin AQUA1 gene has showed an improved tolerance to Zn excess in comparison to the wild-type (wt) line. The aims of this work were to: 1) verify if AQUA1 plants can uptake Zn more efficiently after a longer period of exposure; 2) evaluate if a higher Zn uptake in transgenic lines can have negative effects; 3) assess Zn competing elements (iron and manganese), soluble sugars, osmolytes, and potassium to investigate differences in water and osmotic homeostasis between lines. Under Zn excess, AQUA1 plants showed a twofold Zn translocation factor and a higher xylem sap Zn concentration than the wt plants. Transgenic plants preferentially allocated Zn in aerial biomass and this different behaviour matched with modified manganese and iron balances suggesting that the increased Zn uptake might be related to a decrease in iron transport in the transgenic line. Moreover, a higher instantaneous water use efficiency in control conditions and an increase in bark soluble sugars under Zn excess could allow a higher resistance of AQUA1 plants to the water and osmotic perturbations caused by Zn. Indeed, the Zn excess increased the xylem osmolyte content only in wt plants. Further investigations are required to understand the role of AQUA1 in osmotic regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call