Abstract

Despite identification of multiple factors mediating salmon survival, significant disparities in survival-to-adulthood among hatchery- versus wild-origin juveniles persist. In the present report, we explore the hypothesis that hatchery-reared juveniles might exhibit morphological defects in vulnerable mechanosensory systems prior to release from the hatchery, potentiating reduced survival after release. Juvenile steelhead (Oncorhynchus mykiss) from two different hatcheries were compared to wild-origin juveniles on several morphological traits including lateral line structure, otolith composition (a proxy for auditory function), and brain weight. Wild juveniles were found to possess significantly more superficial lateral line neuromasts than hatchery-reared juveniles, although the number of hair cells within individual neuromasts was not significantly different across groups. Wild juveniles were also found to possess primarily normal, aragonite-containing otoliths, while hatchery-reared juveniles possessed a high proportion of crystallized (vaterite) otoliths. Finally, wild juveniles were found to have significantly larger brains than hatchery-reared juveniles. These differences together predict reduced sensitivity to biologically important hydrodynamic and acoustic signals from natural biotic (predator, prey, conspecific) and abiotic (turbulent flow, current) sources among hatchery-reared steelhead, in turn predicting reduced survival fitness after release. Physiological and behavioral studies are required to establish the functional significance of these morphological differences.

Highlights

  • Salmon (Oncorhyncus spp. and Salmo salar) are central to the economies and cultural identities of many coastal communities in the Northern Hemisphere and a globally important food source [1]

  • While the stereotyped morphology and distribution of canal neuromasts (CN) in juvenile O. mykiss is well documented [34,35], the less prevalent superficial neuromasts (SN) are less well described in the literature

  • S5 is a more diffuse and irregular stitch of relatively large and elongate SN occurring along the length of the trunk; S5 neuromasts are located near the trunk CN, typically adjacent to canal pores in lateral line scales

Read more

Summary

Introduction

Salmon (Oncorhyncus spp. and Salmo salar) are central to the economies and cultural identities of many coastal communities in the Northern Hemisphere and a globally important food source [1]. Five species of Pacific salmon and steelhead (O. mykiss) are reared en masse in federal, state and tribal hatcheries to provide for annual commercial and sport fisheries in the states of Alaska, Washington, Oregon, California, Idaho, and in British Columbia, Canada [4,5]. An estimated 5 billion or more hatchery-reared juveniles are released into the North Pacific annually [6], with associated production costs in the hundreds of millions [7]. Despite augmented survival during the period of hatchery rearing, survival after release among hatcheryreared juveniles is typically low; hatchery adult return rates (i.e., smolt-to-adult survival rates) are commonly on the order of 1–2% or less (e.g., in chinook salmon, O. tshawytscha, and steelhead, [2,8])

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.