Abstract

BackgroundThe role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles.ResultsWe identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles.ConclusionsOur results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

Highlights

  • The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood

  • In cases where the normalized best BLAST score to members of its own class but not within its genus was less than 75% of the normalized best BLAST score to non-members of the Thermoprotei or Halobacteria respectively, the gene was flagged as a probable inter-class LGT event

  • We believe that our algorithm should preferentially identify LGT events into the Halobacteria and Thermoprotei

Read more

Summary

Introduction

The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon These distant transfer events offer potentially greater fitness advantages and it is for this reason that these “long distance” LGT events may have significantly impacted the evolution of microbes. The original estimates suggested that over 20% of Thermotoga maritima’s genome was the result of long distance LGT events. This and numerous other results have led to a potential reevaluation of the tree of life and the notion of a Last Universal Common Ancestor [2,3]. These “long range” transfer events are partially the result of transformation events and, while relatively rare, offer a potentially significant evolutionary mechanism

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call