Abstract

Global seascapes are increasingly modified to support high levels of human activity in the coastal zone. Modifications include the addition of defense structures and boating infrastructure, such as seawalls and marinas that replace natural habitats. Artificial structures support different macrofaunal communities to those found on natural rocky shores; however, little is known about differences in microbial community structure or function in urban seascapes. Understanding how artificial constructions in marine environments influence microbial communities is important as these assemblages contribute to many basic ecological processes. In this study, the bacterial communities of intertidal biofilms were compared between artificial structures (seawalls) and natural habitats (rocky shores) within Sydney Harbour. Plots were cleared on each type of habitat at eight locations. After 3 weeks the newly formed biofilm was sampled and the 16S rRNA gene sequenced using the Illumina Miseq platform. To account for differences in orientation and substrate material between seawalls and rocky shores that might have influenced our survey, we also deployed recruitment blocks next to the habitats at all locations for 3 weeks and then sampled and sequenced their microbial communities. Intertidal bacterial community structure sampled from plots differed between seawalls and rocky shores, but when substrate material, age and orientation were kept constant (with recruitment blocks) then bacterial communities were similar in composition and structure among habitats. This suggests that changes in bacterial communities on seawalls are not related to environmental differences between locations, but may be related to other intrinsic factors that differ between the habitats such as orientation, complexity, or predation. This is one of the first comparisons of intertidal microbial communities on natural and artificial surfaces and illustrates substantial ecological differences with potential consequences for biofilm function and the recruitment of macrofauna.

Highlights

  • Coastal zones have great socioeconomic value supporting industry, trade, and growing urban populations

  • Natural rocky shores were studied at Taylors Bay, Chowder Bay, Farm Cove, and Shark Bay while studies on artificial seawalls were located at Bradleys Head, Kirribilli, Kurraba, and Watsons Bay (Figure 1)

  • This study investigated the variation in bacterial communities on the surface of natural rocky shores and artificial seawalls using recently cleared plots of existing surfaces and deployed surfaces

Read more

Summary

Introduction

Coastal zones have great socioeconomic value supporting industry, trade, and growing urban populations. Modifications include the addition of infrastructure to support activities, such as commercial and recreational boating, fishing, tourism, and waterside living (Airoldi and Bulleri, 2011; e.g., jetties, pilings, and pontoons) and coastal defense structures (e.g., seawalls and breakwaters; Vaselli et al, 2008; Browne and Chapman, 2011). This extensive coastal armouring has significant local and regional effects on natural systems, from loss of natural habitats, decreases in diversity, and increase in non-indigenous species to homogenization of systems (e.g., Dafforn et al, 2013)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.