Abstract

Factors inhibiting cell growth have been isolated from different cell types. However, little information is available concerning their mode of action. A novel growth inhibitory factor of 45 kDa (IDF45) was recently purified to homogeneity from medium conditioned by 3T3 cells. This molecule was able to inhibit DNA synthesis and the growth of chick embryo fibroblasts (CEF) in a reversible manner. By contrast, DNA synthesis stimulated by v-src expression in CEF was poorly inhibited by IDF45. In order to gain further insight into the IDF45 mode of action in normal and transformed CEF, we compared the effects of IDF45 on early stimulation of RNA synthesis induced in CEF by different mitogenic factors and by v-src gene expression. Stimulation, by serum, of RNA synthesis was inhibited by IDF45; however, inhibition increased when cells were preincubated with IDF45 before addition of serum and cell labeling for 2 h. IDF45 was also able to inhibit partially the stimulation of RNA synthesis induced by PMA and PDGF but was unable to inhibit stimulation of RNA synthesis induced by insulin and v-src expression. By contrast, stimulation of RNA synthesis induced by IGF-I was rapidly 100% inhibited by IDF45. The effect of IDF45 on DNA synthesis stimulated by the different mitogens was also determined and was correlated with the effect of IDF45 on RNA synthesis. These results suggest that the modes of action of IDF45 on stimulation of RNA synthesis by v-src and by insulin are similar. Our present results agree with others showing the bifunctional activity of IDF45 as an IGF-binding protein and as an inhibitory molecule in DNA stimulation induced by serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.