Abstract

Photoperiod is an environmental cue used by many temperate-zone species to regulate their reproductive timing. Within species, the degree of reproductive photoresponsiveness can vary widely both among and within populations. The neuroendocrine mechanisms causing this individual variation in photoresponsiveness are unknown. Using selected lines from a population of white-footed mice known to vary genetically in reproductive photoresponsiveness, we tested the hypothesis that variation in the number and/or location of melatonin receptors is the basis for individual differences in reproductive photoresponsiveness. The brains and pars tuberalis of the pituitary from sixteen mice, (eight mice from each of two lines selected for two generations to respond strongly or weakly to photoperiod), were processed for autoradiography using the radioligand 2-[ 125 I ]-iodomelatonin (IMEL). We found significantly higher specific IMEL binding in the medial preoptic area and the bed nucleus of the stria terminalis of non-responsive mice than responsive mice. There were no differences between groups in specific IMEL binding in the suprachiasmatic and dorsomedial nuclei of the hypothalamus, pars tuberalis, or paraventricular nucleus of the thalamus. These results provide support for the hypothesis that individual variation in photoresponsiveness is due in part to differences in the density or affinity of melatonin receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call