Abstract

An analysis of the heat budgets of the near‐surface Arabian Sea and Bay of Bengal shows significant differences between them during the summer monsoon (June–September). In the Arabian Sea the winds associated with the summer monsoon are stronger and favor the transfer of heat to deeper layers owing to overturning and turbulent mixing. In contrast, the weaker winds over the bay force a relatively sluggish oceanic circulation that is unable to overturn, forcing a heat budget balance between the surface fluxes and diffusion and the rate of change of heat in the near‐surface layer. The weak winds are also unable to overcome the strong near‐surface stratification because of a low‐salinity surface layer. This leads to a shallow surface mixed layer that is stable and responds quickly to changes in the atmosphere. An implication is that sea surface temperature (SST) in the bay remains higher than 28°C, thereby supporting large‐scale deep convection in the atmosphere during the summer monsoon. The atmospheric heating associated with the convection plays a critical role in sustaining the monsoon winds, and the rainfall associated with it, not only over the bay but also over the Indian subcontinent, maintains a low‐salinity surface layer. In the Arabian Sea the strong overturning and mixing lead to lower SST and weak convective activity, which in turn, lead to low rainfall and runoff, resulting in weak stratification that can be overcome easily by the strong monsoon winds. Thus, in both basins, there is a cycle with positive feedback, but the cycles work in opposite directions. This locks monsoon convective activity primarily to the bay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.