Abstract

Excitatory neurons in the primary motor cortex project bilaterally to the striatum. However, whether synaptic structure and function in ipsilateral and contralateral cortico-striatal pathways is identical or different remains largely unknown. Here, we describe that excitatory synapses in the mouse contralateral pathway have higher levels of NMDA-type of glutamate receptors (NMDARs) than those in the ipsilateral pathway, although both synapses utilize the same presynaptic vesicular glutamate transporter (VGLUT). We also show that NMDARs containing the GluN2B subunit, but not GluN2A, contribute to this difference. The altered NMDAR subunit composition in these two pathways results in opposite synaptic plasticity induced by θ-burst stimulus: long-term depression in the ipsilateral pathway and long-term potentiation (LTP) in the contralateral pathway. The standard long-term depression (LTD)-inducing protocol using paired postsynaptic and presynaptic activity triggers synaptic depression at ipsilateral pathway synapses, but not at those of the contralateral pathway. Altogether, our results provide novel and unexpected evidence for the lack of bilaterality of NMDAR-mediated synaptic transmission at cortico-striatal pathways due to differences in the expression of GluN2B subunits, which results in differences in bidirectional synaptic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call