Abstract

In African trypanosomes the requirements for glucose and its metabolism vary in different stages of the life cycle. Here we present evidence that cultured procyclic trypanosomes of Trypanosoma brucei rhodesiense uptake glucose against a concentration gradient in a time and dose-dependent manner. Moreover, glucose transport is completely inhibited by the sulphydryl inhibitor N-ethylmaleimide, suggesting the presence of a protein moiety as the carrier molecule. Comparison of glucose uptake in bloodstream and procyclic trypanosomes point to the possibility that different transporters may function in the 2 developmental stages. Glucose uptake by bloodstream trypanosomes requires Na + ions and is inhibited by phlorizin, an inhibitor of Na +-dependent glucose transporters in mammalian cells. Conversely, procyclic trypanosomes transport glucose in a Na +-independent manner, and transport is not affected by phlorizin. Finally, the putative procyclic glucose transporter has a higher affinity for glucose (apparent K m 23 μM) than the bloodstream carrier (apparent K m 237 μM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.