Abstract

Simple SummaryNicotinamide adenine dinucleotide (NAD+) is a multifunctional metabolite involved in many key cellular processes. Outside the cell, NAD+ or its metabolites are important signaling molecules, related especially to calcium homeostasis, which controls the functioning of the heart. The cleavage of NAD+ or its precursor, nicotinamide mononucleotide (NMN), produces derivatives entering the cell to rebuild the intracellular NAD+ pool, which is important for cells with high energy turnover. Abnormalities in NAD+ and NMN metabolism can lead to cell aging and the development of cardiovascular diseases. In this study, we demonstrated that the extracellular metabolism of NAD+ and NMN is vastly different in the vascular endothelium obtained from different species and locations. This may have implications for strategies to modulate the NAD+ system and may cause difficulties for comparing the results of different reports.The disruption of the metabolism of extracellular NAD+ and NMN may affect related signaling cascades and pathologies, such as cardiovascular or respiratory system diseases. We aimed to study NAD+ and NMN hydrolysis on surface endothelial cells of diverse origins and with genetically modified nucleotide catabolism pathways. We tested lung endothelial cells isolated from C57BL/6 J wild-type (WT) and C57BL/6 J CD73 knockout (CD73 KO) mice, the transfected porcine iliac artery endothelial cell line (PIEC) with the human E5NT gene for CD73 (PIEC CD73), and a mock-transfected control (PIEC MOCK), as well as HMEC-1 and H5V cells. Substrate conversion into the product was followed by high-performance liquid chromatography (HPLC). We showed profound differences in extracellular NAD+ and NMN metabolism related to the vessel origin, species diversity, and type of culture. We also confirmed the involvement of CD38 and CD73 in NAD+ and NMN cleavage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.