Abstract

Dynamic modulus of elasticity was determined in clearwood samples of eight tropical hardwood species using longitudinal vibrations, flexural vibration and ultrasonic transit-time methods. These samples were subsequently subjected to three point static bending test to determine static modulus of elasticity and modulus of rupture. Acoustic velocity and wood density were found to be independent parameters as the velocity was nearly the same in wood with distinctly different densities. Among the three dynamic measurements, modulus from the ultrasonic method was the highest followed by the longitudinal vibration and flexural vibration. Any of three vibration methods could be used to predict static modulus as they exhibited a near perfect correlation with static MoE. However, the dynamic modulus determined by different vibration methods were found to diverge with increasing static modulus. Wood density was the dominating factor influencing both modulus of elasticity and modulus of rupture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.