Abstract

Considerable knowledge concerning developmental cell death has come from the study of somatic motor neurons (SMNs), but a related set of spinal neurons, the autonomic motor neurons (AMNs), have been studied less extensively in this respect. In the present study, we used three different approaches to determine the amount of AMN cell death during normal development in the rat. First, target dependency was studied in organotypic slice cultures, and it was found that AMNs survived for at least 12 days after removal of their postsynaptic targets. No factors were added to the serum-free medium to substitute for the ablated targets, indicating that AMNs were able to survive without target-derived trophic factors. Such target-independent survival is not characteristic of neurons that undergo typical developmental cell death. Second, AMNs were counted in double-stained choline acetyltransferase immunocytochemical and NADPH diaphorase histochemical preparations at ages (postnatal days 4-22) encompassing the period when AMN postsynaptic target cells undergo developmental death. Neuron numbers were essentially identical at all ages examined, indicating that no AMN cell death occurred postnatally. Finally, from embryonic day 13 to postnatal day 22, animals were analyzed by using terminal transferase-mediated nick-end labeling to identify dying cells. Many fewer labeled cells were observed among AMNs than among SMNs. Thus, all three approaches indicated that there is a significant SMN/AMN difference in developmental cell death. The phenotypic trait(s) that underlies this difference may also be important in the relative resistance of AMNs to pathological conditions that induce death of SMNs, e.g., those involved in amyotrophic lateral sclerosis and excitotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.