Abstract
Previous studies have demonstrated the CYP3A4 mediated oxidation of the 5-aminooxindole motif, present in the trifluoromethylpyrimidine class of PYK-2 inhibitors, to a reactive bis-imine species, which can be trapped with glutathione (GSH) in human liver microsomal incubations. The corresponding 5-aminobenzsultam derivatives, which should possess a similar oxidative liability, do not form GSH conjugates in microsomal incubations. In the current study, we conducted a retrospective analysis on representative 5-aminooxindole and 5-aminobenzsultam PYK-2 inhibitors utilizing CYP3A4 molecular docking and quantum chemical calculations to rationalize the bioactivation differences. Our analysis revealed key differences in (a) active site binding and (b) two-electron oxidation rates, which correlate with GSH adduct formation with the two moieties. The value of linear ion/orbitrap mass spectrometry to detect GSH conjugates with greater sensitivity, compared with conventional triple quadrupole mass spectrometry approaches, was also demonstrated in the course of these studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.