Abstract

The mechanisms of bacterial nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal in pilot-scale constructed wetlands (CWs) were investigated in the present work. Three types of CWs were assessed: vertical flow (VF), horizontal flow (HF), and surface flow (SF), each with three planting conditions, with either Thalia, Canna or without plants. The results show that construction types affected microbes more than planting conditions. VF CWs promoted the aerobic processing of total N, total P, COD, and NH3-N, increasing the respective removal efficiencies by 4–19%, 13–32%, 19–29%, and 75–80%, respectively, compared with SF CWs. The relative abundance of nitrifying, denitrifying, methanotrophic and dephosphorized bacteria, and functional genes such as nxrA, nirK, nosZ, mmoX, and phoD were higher in VF CWs. Positive and simple gene networks in VF CWs can effectively reduce the redundancy in functional genes, enhance bacterial function and gene interactions, thus promoting nutrient removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call