Abstract

Abstract Amongst the factors hypothesized to be responsible for high ectomycorrhizal fungal diversity are resource partitioning and niche differentiation. However, functional differences amongst ectomycorrhizal fungi, which are pre-requisites for resource partitioning, are known primarily from lab studies; now realistic field experiments are needed in order to establish that these differences exist under field conditions. In this study, Picea engelmannii seedlings planted in a subalpine clearcut became naturally colonized over the course of 1 y. Then a defined volume of soil around each seedling was injected with 15N-labelled nitrate, ammonium or aspartate. Seedling biomass and N content increased, but N concentration decreased, with percent colonization of root systems. Accumulation of 15N per unit dry weight was not affected by the proportion of roots colonized but, rather, was influenced by the primary ectomycorrhizal fungus colonizing the seedling. Seedlings colonized by a Wilcoxina sp. accumulated more 15N per g than seedlings colonized by a Cenococcum sp. The presence of dark septate hyphae in the mantle was associated with lower accumulation of 15N by seedlings colonized by Amphinema byssoides. Our results demonstrate that the physiological differences required to support the concept of niche differentiation amongst ectomycorrhizal fungi exist in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call