Abstract
The responses of pacemaker and nonpacemaker Aplysia neurons to voltage clamp commands of less than 200 msec duration are essentially identical. For moderate depolarizing commands there is an early inward transient current followed by a late outward current and an outward tail current when the membrane is clamped back to resting potential. On long (1-2 sec) commands in pacemakers there is a marked sag in the late current and an inward tail current. E(tail), the potential of the membrane at which there is no net current flow under the conditions prevailing at the end of the clamp, shifts from about -9.0 mv on short commands to +5.0 mv on long commands. In contrast there is no marked sag of the late current or inward tail current on long commands in nonpacemakers, and E(tail) is near -9.0 mv for both short and long commands. The current sag and shift in E(tail) can be ascribed to a decreased conductance (presumably to K(+)) at the end of the long as compared to the short command in half of the pacemaker neurons. In the remaining cells the essential difference from nonpacemakers appears to be either a greater restricted extracellular space or a more active potential-dependent electrogenic Na(+) pump in pacemakers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.