Abstract

We used body-worn inertial sensors to quantify differences in semi-free-living gait between stairs and on normal flat ground in older adults, and investigated the utility of assessing gait on these terrains for predicting the occurrence of multiple falls. Eighty-two community-dwelling older adults wore two inertial sensors, on the lower back and the right ankle, during several bouts of walking on flat surfaces and up and down stairs, in between rests and activities of daily living. Derived from the vertical acceleration at the lower back, step rate was calculated from the signal's fundamental frequency. Step rate variability was the width of this fundamental frequency peak from the signal's power spectral density. Movement vigor was calculated at both body locations from the signal variance. Partial Spearman correlations between gait parameters and physiological fall risk factors (components from the Physiological Profile Assessment) were calculated while controlling for age and gender. Overall, anteroposterior vigor at the lower back in stair descent was lower in subjects with longer reaction times. Older adults walked more slowly on stairs, but they were not significantly slower on flat surfaces. Using logistic regression, faster step rate in stair descent was associated with multiple prospective falls over 12 months. No significant associations were shown from gait parameters derived during walking upstairs or on flat surfaces. These results suggest that stair descent gait may provide more insight into fall risk than regular walking and stair ascent, and that further sensor-based investigation into unsupervised gait on different terrains would be valuable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call