Abstract

BackgroundObstructive ventilatory disturbances occur in both chronic obstructive pulmonary disease (COPD), a typical disease representative of peripheral airway obstruction, and central airway obstruction (CAO). Pulmonary function tests (PFTs), which depend on patient effort, are traditionally used to evaluate lung function. The forced oscillation technique (FOT) is an effort-independent method for examining lung function during tidal breathing. The FOT is used universally to assess respiratory function in patients with COPD. Several studies have measured FOT to assess ventilatory disturbances in CAO. The results showed that FOT measurements in patients with CAO were similar to those reported in patients with COPD. However, no studies have compared FOT measurements directly between CAO and COPD. The aim of this study was to identify differences in ventilatory disturbances between peripheral and central airway obstructions in COPD and CAO, before patients received pharmacological therapy or bronchoscopic interventions, respectively.Patients and MethodsWe retrospectively included 16 patients with CAO (10 cases of tracheal obstruction and 6 cases of bronchial obstruction) and 75 treatment-naïve patients with COPD (60 cases in Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage II and 15 cases in GOLD stage III) that were admitted from December 2013 to May 2017. Prior to treatment, patients were examined with the FOT and PFTs.ResultsAll parameters measured with the FOT in the inspiratory phase were significantly worse in patients with CAO than in patients with COPD. The PFTs showed that the CAO group had a significantly lower peak expiratory flow rate. In the airway wall thickening phenotype of COPD, a difference between the inspiratory and expiratory phases of the resonance frequency (ΔFres) was the best indicator for distinguishing between peripheral and central airway obstructions.ConclusionThis study compared differences between CAO and COPD (mainly GOLD stage II). We found that the FOT measurement, ΔFres, was the optimal indicator of the difference between the airway wall thickening COPD phenotype and CAO. Thus, the difference might be due to mechanical changes that occur in COPD with airway wall thickening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call