Abstract
Bovine glutathione transferase A1-1 (bGST A1-1) and human GST A3-3 (hGST A3-3) share both high amino acid sequence similarity and selective expression in steroidogenic organs. hGST A3-3 is the most efficient steroid isomerase known in mammals, and is thought to catalyze isomerization reactions in the biosynthesis of steroid hormones. We observed that four out of five residues essential to the high steroid isomerase activity of hGST A3-3 are conserved in bGST A1-1. The bovine GST was cloned, heterologously expressed, and purified to homogeneity. Its specific activity towards classical GST substrates and two steroids, Δ 5-androstene-3,17-dione and Δ 5-pregnene-3,20-dione, was studied, and the steady-state kinetic parameters with the steroids were determined. We find that bGST A1-1 exhibits enzymatic activities comparable to those of hGST A3-3 towards non-steroid substrates. However, the bovine enzyme had 100 times lower catalytic efficiency in steroid isomerization reactions than the human GST. Nevertheless, bGST A1-1 was found as efficient as bovine 3β-hydroxysteroid dehydrogenase as a steroid isomerase. We discuss likely reasons for the contrasting steroid isomerase activities of bGST A1-1 and hGST A3-3, and alternative roles of bGST A1-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.