Abstract
Adaptation is essential in maintaining stability during balance-challenging situations. We studied, in standing subjects with eyes open and closed, adaptive responses of the anteroposterior head, shoulder, hip and knee movements; gastrocnemius and tibialis anterior EMG activity and anteroposterior body posture when proprioceptive information from the neck or calf muscles underwent vibratory perturbations. After 30s of quiet stance, vibratory stimuli were applied repeatedly for 200s, and adaption to stimulation was analyzed in four successive 50s periods.Repeated neck and calf vibration significantly increased linear body movement variance at all recorded sites (p<0.001, except neck stimulation with eyes closed, EC-neck), increased tibialis anterior (p<0.001, except EC-neck) and gastrocnemious muscle activity (p<0.001). Most body movement variances and tibialis anterior EMG activity decreased significantly over time (most p-values<0.01 or lower) and overall, the body leaning forward increased from 5.5° to 6.5° (p<0.01). The characteristics of the responses were influenced by vision and site of vibration, e.g., neck vibration affected body posture more rapidly than calf vibration. Our findings support the notion that proprioceptive perturbations have different effects in terms of nature, degree and adaptive response depending on site of vibratory proprioceptive stimulation, a factor that needs consideration in clinical investigations and design of rehabilitation programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.