Abstract

Depending on disease stage follicular lymphoma (FL) lack the t(14;18) in ~15-~50% of cases. Nevertheless, most of these cases express BCL2. To elucidate mechanisms triggering BCL2 expression and promoting pathogenesis in t(14;18)-negative FL, exonic single-nucleotide variant (SNV) profiles of 28 t(14;18)-positive and 13 t(14;18)-negative FL were analyzed, followed by the integration of copy-number changes, copy-neutral LOH and published gene-expression data as well as the assessment of immunoglobulin N-glycosylation sites. Typical FL mutations also affected t(14;18)-negative FL. Curated gene set/pathway annotation of genes mutated in either t(14;18)-positive or t(14;18)-negative FL revealed a strong enrichment of same or similar gene sets but also a more prominent or exclusive enrichment of immune response and N-glycosylation signatures in t(14;18)-negative FL. Mutated genes showed high BCL2 association in both subgroups. Among the genes mutated in t(14;18)-negative FL 555 were affected by copy-number alterations and/or copy-neutral LOH and 96 were differently expressed between t(14;18)-positive and t(14;18)-negative FL (P<0.01). N-glycosylation sites were detected considerably less frequently in t(14;18)-negative FL. These results suggest a diverse portfolio of genetic alterations that may induce or regulate BCL2 expression or promote pathogenesis of t(14;18)-negative FL as well as a less specific but increased crosstalk with the microenvironment that may compensate for the lack of N-glycosylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call