Abstract
Strength and conditioning specialists commonly deal with the quantification and selection the setting of protocols regarding resistance training intensities. Although the one repetition maximum (1RM) method has been widely used to prescribe exercise intensity, the velocity-based training (VBT) method may enable a more optimal tool for better monitoring and planning of resistance training (RT) programs. The aim of this study was to compare the effects of two RT programs only differing in the training load prescription strategy (adjusting or not daily via VBT) with loads from 50 to 80% 1RM on 1RM, countermovement (CMJ) and sprint. Twenty-four male students with previous experience in RT were randomly assigned to two groups: adjusted loads (AL) (n = 13) and non-adjusted loads (NAL) (n = 11) and carried out an 8-week (16 sessions) RT program. The performance assessment pre- and post-training program included estimated 1RM and full load-velocity profile in the squat exercise; countermovement jump (CMJ); and 20-m sprint (T20). Relative intensity (RI) and mean propulsive velocity attained during each training session (Vsession) was monitored. Subjects in the NAL group trained at a significantly faster Vsession than those in AL (p < 0.001) (0.88–0.91 vs. 0.67–0.68 m/s, with a ∼15% RM gap between groups for the last sessions), and did not achieve the maximum programmed intensity (80% RM). Significant differences were detected in sessions 3–4, showing differences between programmed and performed Vsession and lower RI and velocity loss (VL) for the NAL compared to the AL group (p < 0.05). Although both groups improved 1RM, CMJ and T20, NAL experienced greater and significant changes than AL (28.90 vs.12.70%, 16.10 vs. 7.90% and −1.99 vs. −0.95%, respectively). Load adjustment based on movement velocity is a useful way to control for highly individualised responses to training and improve the implementation of RT programs.
Highlights
Resistance training (RT) is recognized as an effective method for increasing strength, power and muscle hypertrophy
The main finding of this study was that the non-adjusted loads (NAL) group, which performed the same volume as the adjusted loads (AL) group but with lesser velocity loss (VL) induced in each training session, showed greater strength gains in the full-squat exercise, countermovement jump (CMJ), and sprint than the AL group (Table 2)
Considering that loads progressed over time, it is important to note from a practical standpoint that our results may be more ecologically valid and better represent the trends that would be observed in a real-world setting
Summary
Resistance training (RT) is recognized as an effective method for increasing strength, power and muscle hypertrophy. Testing 1RM several times to adjust loads during the training period may interfere with the estimated training stimulus due to the significant effort that 1RM represents, resulting in a non-specific stimulus that could interfere negatively in physical performance improvement (González-Badillo & Sánchez-Medina, 2010). For this reason, the difficulty of determining the differences between performed and previously programmed intensities represents a typical concern for practitioners and training decision making processes are very limited due to the existing lack of knowledge of the actual shape and fatigue state of the athlete
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.