Abstract

Charged groups in pulp have been shown to enhance the tensile strength of the paper produced from the pulp. Oxygen delignification introduces charged groups and it is of interest to determine how the delignification should be distributed between the cooking and the oxygen stage with respect to mechanical properties. A number of unbleached kraft cooked and oxygen delignified pulps within a wide kappa number range were produced and refined, and the effects of the refining on the morphology and mechanical properties were studied. The WRV correlated with the fiber charge and at a given fiber charge, kraft cooked and oxygen delignified pulps had the same WRV development in refining, although they had significantly different kappa numbers. The tensile strength development during refining depends on the fiber rigidity which is affected by the lignin content, the fiber charge and the chemical and mechanical processes used. Refining increased the curl of the kraft cooked pulps and decreased the curl of oxygen delignified pulps, irrespective of kappa number. A greater increase in tensile strength was seen for the pulps with a higher fiber charge and WRV, probably because of the greater degree of fibrillation achieved in the beating process. Despite the greater fiber deformation in the oxygen delignified pulps, the strength can be increased by a larger amount of charged groups and a greater swelling of the fibers.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.