Abstract
We study finite groups G having a normal subgroup H and \(D \subset G \setminus H, D \cap D^{-1}=\emptyset ,\) such that the multiset \(\{ xy^{-1}:x,y \in D\}\) has every non-identity element occur the same number of times (such a D is called a DRAD difference set). We show that there are no such groups of order \(4p^2\), where p is an odd prime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.