Abstract

AbstractThe paper deals with the stability, with respect to initial data, of difference schemes that approximate the heat-conduction equation with constant coefficients and nonlocal boundary conditions. Some difference schemes are considered for the one-dimensional heat-conduction equation, the energy norm is constructed, and the necessary and sufficient stability conditions in this norm are established for explicit and weighted difference schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.