Abstract

In the context of anthropogenic environmental impact analysis, there is a need to study soil carbon dynamics. Since CO 2 transport and production depend on soil texture, air humidity, rainfall frequency, and other factors, mathematical description of the gaseous phase of soils in a specific area is a topical task. This work is based on a mathematical model of the production and transport of carbon dioxide in the circadian time range in forest soils typical of Eastern Fennoscandia. The model is focused on a comparative quantitative analysis of diffusive and convective components to assess the dynamics of soil respiration and changes in flow directions (towards the atmosphere and deep-lying horizons, to groundwater). In this paper, the transition to the dimensionless form of the model was implemented, an explicit–implicit difference scheme and an iterative computational algorithm for solving the boundary value problem of carbon dioxide transport in a soil horizon were proposed.

Highlights

  • Ключевыеcлова: краевые задачи в пористой среде; диффузия и конвекция; перенос CO2 в песчаных почвах; явно-неявная разностная схема

  • This work is based on a mathematical model of the production and transport of carbon dioxide in the circadian time range in forest soils typical of Eastern Fennoscandia

  • The model is focused on a comparative quantitative analysis of diffusive and convective components to assess the dynamics of soil respiration and changes in flow directions

Read more

Summary

Математическая модель

Предложенную в [2, 19]. Уравнение материального баланса Характерный вид фактора fε в зависимости от параметра a > 0 представлен на рис. В качестве аппроксимации для среднегодовых температурных волн (индекс y означает year , а индекс J – July ) принимается следующее выражение: Характерный вид второго слагаемого (продуктивности) Pr = Fpr представлен на рис. Продуктивность моделируется на основе зависимости Fpr = A exp{−b/z}/zk, k > 0. + ∆Ty exp − αyz cos − αyz , где период колебаний τy = 2π/ωy равен году, ωy – соответствующая частота, χy – коэффициент температуропроводности, T∞ – установившееся значение температуры на глубине 2–3 метра (например, T∞ = 277, 15 K), ∆Ty – амплитуда колебания. Так как продуктивность зависит от отклонений температуры и влажности от оптимальных значений, то примем. Значение θ = [αθm0 ax + βθm0 in]/[α + β] оптимальной влажности (при благоприятной температуре), для которой fmax = fθ(θ) = 1, задается из опытных данных.

Вычислительный алгоритм
Для конвективного слагаемого примем
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.