Abstract
The solution of differential-difference equations with small shifts having layer behaviour is the subject of this study. A difference scheme is proposed to solve this equation using a non-uniform grid. With the non-uniform grid, finite - difference estimates are derived for the first and second-order derivatives. Using these approximations, the given equation is discretized. The discretized equation is solved using the tridiagonal system algorithm. Convergence of the scheme is examined. Various numerical simulations are presented to demonstrate the validity of the scheme. In contrast to other techniques, maximum errors in the solution are organized to support the method. The layer behaviour in the solutions of the examples is depicted in graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.