Abstract

We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from pEHVRs again. Thus we proposed here a simple empirical method to estimate S-wave velocity structures using single-station microtremor records, which is the most cost-effective method to characterize the site effects.

Highlights

  • It is essential to evaluate the subsurface structure properly and validate previously proposed structures based on geological data and boring explorations with the observed seismic and non-seismic data for the quantitative prediction of ground motions in urban areas

  • In this study, we calculated the horizontal-to-vertical spectral ratios (HVR) from observed microtremors (MHVR) as well as those of observed weak earthquake ground motions (EHVR) and compared predominant peak frequencies and amplitudes at these peak frequencies of the microtremor horizontal-to-vertical spectral ratio (MHVR) and earthquake horizontal-to-vertical spectral ratio (EHVR) with those calculated theoretically from S-wave velocity models based on the diffuse wave concept

  • When we compare MHVRs and EHVRs, we found that they share similarities but have significant differences in their shapes, especially after the fundamental peak frequency in MHVRs

Read more

Summary

Introduction

It is essential to evaluate the subsurface structure properly and validate previously proposed structures based on geological data and boring explorations with the observed seismic and non-seismic data for the quantitative prediction of ground motions in urban areas. Recent advances by Cho et al (2006) and Tada et al (2007) as a natural extension of the pioneering work of the so-called SPAC method by Aki (1957) provide us quite a strong tool for dispersion analysis. The downside of these array methods is that we need to deploy as many stations as possible for the precise determination of phase velocity at one frequency band and the array size must be increased in proportion to the targeted depth. These array methods need very low-noise sensors with high coherence, especially in the long period range

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.