Abstract
With AKARI, we obtain the spatially-resolved near-infrared (2.5 - 5.0 um) spectra for the nearby starburst galaxy M82. These spectra clearly show the absorption features due to interstellar ices. Based on the spectra, we created the column density maps of H_2O and CO_2 ices. As a result, we find that the spatial distribution of H_2O ice is significantly different from that of CO_2 ice; H_2O ice is widely distributed, while CO_2 ice is concentrated near the galactic center. Our result for the first time reveals variations in CO_2/H_2O ice abundance ratio on a galactic scale, suggesting that the ice-forming interstellar environment changes within a galaxy. We discuss the cause of the spatial variations in the ice abundance ratio, utilizing spectral information on the hydrogen recombination Br{\alpha} and Br{\beta} lines and the polycyclic aromatic hydrocarbon 3.3 um emission appearing in the AKARI near-infrared spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.