Abstract

This study aimed to compare differences in interactions between cholesterol and β- cyclodextrin and its derivatives for selecting a suitable β-cyclodextrin derivative to efficiently remove cholesterol from high-melting-point foods. First, the formation of cholesterol/β-cyclodextrin derivative complexes was investigated using Fourier transform infrared spectroscopy and thermogravimetric analysis. Secondly, the conformations of β-cyclodextrin derivatives were determined from experimental and calculated 1H NMR spectra, and the weak interactions between cholesterol and β-cyclodextrin derivatives were studied by computational approach. Cholesterol/hydroxypropyl-β-cyclodextrin complex had the lowest complexation energy. Besides, two moderate hydrogen bonds were formed between cholesterol and hydroxypropyl-β-cyclodextrin and between cholesterol and sulfobutyl ether-β-cyclodextrin, while one weak hydrogen bond was formed between cholesterol and methyl-β-cyclodextrin. Finally, the efficiency of cholesterol removal by hydroxypropyl-β-cyclodextrin was 5.47% higher than that by β-cyclodextrin at their optimal temperature. This work provided a theoretical basis for selecting a competent adsorbent to effectively remove cholesterol from high-melting-point foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call