Abstract

To investigate the variation of soil water holding capacity under different land use types can provide scientific basis for evaluating the change characteristics and regulation mechanism of water conservation capacity in alpine ecosystems. We collected soil samples at different depth intervals (0-10, 10-20 and 20-30 cm) under three land use types (farmland, forest, and grassland) in Tibet alpine region to measure the maximum water holding capacity, capillary water holding capacity, field capacity, and basic soil physicochemical properties. The associated environmental factors (mean annual precipitation, normalized difference vegetation index, altitude, slope gradient and surface roughness) were extracted to analyze the change characteristics and influencing factors of soil water holding capacity under different land use types. The results showed that soil water holding capacity (the maximum water holding capacity, capillary water holding capacity, and field capacity) of farmland, forest, and grassland all decreased with increasing soil depth. The mean values of the maximum water holding capacity, capillary water holding capacity, and field capacity in the 0-30 cm soil layer of grassland were 379.79, 329.57 and 194.39 g·kg-1, respectively, which were significantly higher than that of farmland (301.15, 259.67, and 154.91 g·kg-1) and forest (293.09, 251.49, and 117.01 g·kg-1). Results of the redundancy analysis showed that soil properties significantly influenced soil water holding capacity, with explanation rate of 44.6%, 42.7%, 37.6% and 35.8% for total porosity, soil organic matter, capillary porosity and soil bulk density, respectively. Results of the principal component analysis showed that mean annual precipitation, normalized difference vegetation index, altitude, slope gradient, and surface roughness were the main environmental factors affecting the spatial variation of soil water holding capacity, with a cumulative contribution of 72.4%. The grassland in the alpine region of Tibet had the highest water holding capacity and could effectively prevent soil erosion. Therefore, the implementation of returning farmland to grassland and the enclosure management of degraded grassland would be conducive to improve soil water conservation capacity in the alpine regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call