Abstract

We apply a recently developed wavelet based approach to characterize the correlation and scaling properties of non-stationary financial time series. This approach is local in nature and it makes use of wavelets from the Daubechies family for detrending purpose. The built-in variable windows in wavelet transform makes this procedure well suited for the non-stationary data. We analyze daily price of NASDAQ composite index for a period of 20 years, and BSE sensex index, over a period of 15 years. It is found that the long-range correlation, as well as fractal behavior for both the stock index values differ from each other significantly. Strong non-statistical long-range correlation is observed in BSE index, whose removal revealed a Gaussian random noise character for the corresponding fluctuation. The NASDAQ index, on the other hand, showed a multifractal behavior with long-range statistical correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.