Abstract

Clostridioides difficile toxin A (TcdA) and Toxin B (TcdB) trigger inflammasome activation with caspase-1 activation in cultured cells, which in turn induce the release of IL-6, IFN-γ, and IL-8. Release of these proinflammatory responses is positively regulated by Ras-GTPases, which leads to the hypothesis that Ras glucosylation by glucosylating toxins results in (at least) reduced proinflammatory responses. Against this background, data on toxin-catalyzed Ras glucosylation are required to estimate of pro-inflammatory effect of the glucosylating toxins. In this study, a quantitative evaluation of the GTPase substrate profiles glucosylated in human colonic (Caco-2) cells treated with either TcdA, TcdB, or the related Clostridium sordellii lethal toxin (TcsL) was performed using multiple reaction monitoring (MRM) mass spectrometry. (H/K/N)Ras are presented to be glucosylated by TcsL and TcdA but by neither TcdB isoform tested. Furthermore, the glucosylation of (H/K/N)Ras was detected in TcdA-(not TcdB)-treated cells, as analyzed exploiting immunoblot analysis using the Ras glucosylation-sensitive 27H5 antibody. Furthermore, [14C]glucosylation of substrate GTPase was found to be increased in a cell-free system complemented with Caco-2 lysates. Under these conditions, (H/K/N)Ras glucosylation by TcdA was detected. In contrast, TcdB-catalyzed (H/K/N)Ras glucosylation was detected by neither MRM analysis, immunoblot analysis nor [14C]glucosylation in a cell-free system. The observation that TcdA (not TcdB) glucosylates Ras subtype GTPases correlates with the fact that TcdB (not TcdA) is primarily responsible for inflammatory responses in CDI. Finally, TcsL more efficaciously glucosylated Ras subtype GTPase as compared with TcdA, reinforcing the paradigm that TcsL is the prototype of a Ras glucosylating toxin.

Highlights

  • The family of large clostridial glucosylating toxins (LCGTs) encompasses toxin A (TcdA) and toxin B (TcdB) of Clostridioides difficile, lethal toxin (TcsL) and hemorrhagic toxin (TcsH) from Clostridium sordellii, and large toxin (TpeL) from C. perfringens (Popoff and Bouvet, 2009; Genth and Just, 2011; Genth et al, 2014; Jank et al, 2015)

  • Analysis of GTPase glucosylation by LCGT has widely been studied in cell-free systems to determine the specificities of LCGTs for particular small GTPases (Just et al, 1995b; Genth et al, 2014)

  • Initial evaluation of the profiles of substrate GTPase profile of full-length TcdA-10463 and TcdB-10463 in cell-free systems has revealed that TcdA-10463 and TcdB-10463 glucosylate the Rho subtype GTPases including RhoA, Rac1, and Cdc42 but not Ras subtype GTPases (Just et al, 1995a,b)

Read more

Summary

Introduction

The family of large clostridial glucosylating toxins (LCGTs) encompasses toxin A (TcdA) and toxin B (TcdB) of Clostridioides difficile, lethal toxin (TcsL) and hemorrhagic toxin (TcsH) from Clostridium sordellii, and large toxin (TpeL) from C. perfringens (Popoff and Bouvet, 2009; Genth and Just, 2011; Genth et al, 2014; Jank et al, 2015). The glucosylating toxins are regarded to be responsible for the loss of intestinal barrier function and for inflammation observed in C. difficile-associated diarrhea (CDAD), C. sordellii-induced haemorrhagic enteritis and enterotoxemia, and C. perfringensassociated necrotic enteritis (Popoff, 2011; Smits et al, 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call