Abstract

MoS2 has excellent vacuum lubricating performance. However, it is prone to be oxidized in a high-temperature atmospheric environment, leading to the deterioration of its lubricating performance and even serious space accidents. The high-temperature lubricating performance of MoS2-based solid lubricating materials can be improved to some extent by the co-compounding of appropriate oxides and Ag. The tribological properties of several common nano-oxides (ZnO, TiO2, Al2O3, and ZrO2) composited with metal Ag of MoS2-based composites were compared at 450 °C. The results showed that the comprehensive tribological performance of MoS2-TiO2-Ag was the best, an the average friction coefficient of about 0.26, and a wear rate of about 1.2 × 10−5 mm3/Nm, which was 18% and 43% lower than that of MoS2-Ag, respectively. The excellent tribological properties of MoS2-TiO2-Ag composites were attributed to three aspects: Firstly, with the help of the oxidation resistance of TiO2 to MoS2 to some extent and its high ionic potential, its oxidation resistance was improved and its shear strength was reduced to provide low friction. Secondly, relying on the low shear strength and good film-forming tendency of soft metal Ag on the sliding surface, a low shear tribo-film was easily formed on the friction interface, which was helpful for the synergistic lubrication of Ag, MoS2, and TiO2.Thirdly, through the matching of hard TiO2 and soft Ag, the wear resistance and bearing capacity of the composites were improved to some extent. The research results can provide some reference for the selection and design of MoS2-based high-temperature lubricating materials and the enhancement of their tribological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.