Abstract

We consider treatment effect estimation via a difference-in-difference approach for data with local spatial interaction such that the outcome of observed units depends on their own treatment as well as on the treatment status of proximate neighbors. We show that under standard assumptions (common trend and ignorability) a straightforward spatially explicit version of the benchmark difference-in-differences regression is capable of identifying both direct and indirect treatment effects. We demonstrate the finite sample performance of our spatial estimator via Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.