Abstract

BackgroundDysfunction of agr, with reduced susceptibility or hetero-resistance to vancomycin, is thought to be associated with a worse outcome of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia (MRSAB). However, the difference in agr dysfunction according to the SCCmec type in MRSA infection is undetermined. We compared the prevalence of agr dysfunction, reduced vancomycin susceptibility and the outcomes of SCCmec IV/IVa and I–III MRSAB.MethodsThe study included 307 cases of MRSAB. SCCmec types were determined by multiplex PCR. The clinical and microbiological features and outcomes of 58 SCCmec IV/IVa MRSAB were compared with those of 249 SCCmec I–III MRSAB.ResultsCompared with SCCmec I–III MRSAB, SCCmec IV/IVa MRSAB was associated with lower rates of agr dysfunction (3% vs. 43%), vancomycin minimum inhibitory concentration (MIC) = 2 µg/mL (3% vs. 15%), and hetero-resistance to vancomycin (0% vs. 8%) (all P<0.05). However, the 30-day and S. aureus-related mortality in patients with SCCmec IV/IVa MRSAB were not different from those in patients with SCCmec I–III MRSAB in multivariate analyses (HR 1.168, 95% CI 0.705–1.938; HR 1.025, 95% CI 0.556–1.889).ConclusionsSCCmec IV/IVa MRSAB was associated with lower rates of agr dysfunction and hetero-resistance to vancomycin and a lower vancomycin MIC, compared with SCCmec I–III MRSAB. However, the outcomes of SCCmec IV/IVa MRSAB did not differ from those of SCCmec I–III MRSAB.

Highlights

  • Accessory gene regulator is a global regulator gene of Staphylococcus aureus that controls the expression of major virulence factors, such as cytotoxins, enzymes, and superantigens [1]

  • It is still not known whether the outcomes of bacteremia caused by SCCmec IV/IVa methicillin-resistant Staphylococcus aureus (MRSA) (SCCmec IV/IVa MRSAB) are similar to that caused by SCCmec I–III MRSA (SCCmec I–III MRSAB), because clinical studies have obtained conflicting results [9,10,11,12,13,14]

  • This study compared the prevalence of agr dysfunction, heteroVISA, and the vancomycin minimum inhibitory concentration (MIC) of SCCmec IV/IVa MRSAB with those of SCCmec I–III MRSAB, and investigated the impact of these factors on the outcomes of MRSA bacteremia

Read more

Summary

Introduction

Accessory gene regulator (agr) is a global regulator gene of Staphylococcus aureus that controls the expression of major virulence factors, such as cytotoxins, enzymes, and superantigens [1]. The prevalence of agr dysfunction according to the SCCmec type in MRSA infection remains uncertain, MRSA possessing SCCmec type IV/IVa (SCCmec type IV/IVa MRSA), known as a community-associated MRSA clone, has different antibiotic susceptibility patterns and toxin profiles from MRSA possessing SCCmec types I–III (SCCmec I–III MRSA) It is still not known whether the outcomes of bacteremia caused by SCCmec IV/IVa MRSA (SCCmec IV/IVa MRSAB) are similar to that caused by SCCmec I–III MRSA (SCCmec I–III MRSAB), because clinical studies have obtained conflicting results [9,10,11,12,13,14]. Dysfunction of agr, with reduced susceptibility or hetero-resistance to vancomycin, is thought to be associated with a worse outcome of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia (MRSAB). We compared the prevalence of agr dysfunction, reduced vancomycin susceptibility and the outcomes of SCCmec IV/IVa and I–III MRSAB

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call