Abstract

Correlation functions and form factors in vertex models or spin chains are known to satisfy certain difference equations called the quantum Knizhnik-Zamolodchikov equations. We find similar difference equations for the case of semi-infinite spin chain systems with integrable boundary conditions. We derive these equations using the properties of the vertex operators and the boundary vacuum state, or alternatively through corner transfer matrix arguments for the eight-vertex model with a boundary. The spontaneous boundary magnetization is found by solving such difference equations. The boundary S-matrix is also proposed and compared, in the sine-Gordon limit, with Ghoshal-Zamolodchikov's result. The axioms satisfied by the form factors in the boundary theory are formulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.