Abstract
The characteristic aroma compounds of braised pork were identified through molecular sensory science and PLSR analysis, and the difference between two cooking methods, traditional open-fire (BPF) and induction cooker (BPC), was compared. Seventeen aroma compounds with odor activity values (OAVs) > 1 were identified in both samples. BPF revealed higher OAVs for most of the aroma compounds compared to BPC, and the higher aroma quality. Aroma recombination and omission experiments confirmed that twelve aroma compounds significantly contributed to the characteristic aroma of braised pork, and eight compounds such as hexanal, (E)-2-octenal, and methanethiol were further confirmed as important contributors by PLSR analysis. Furthermore, PLSR analysis clarified the role of aldehydes such as hexanal, (E)-2-octenal, and (E,E)-2,4-decadienal in contributing to fatty attribute, whereas methanethiol was responsible for the meaty aroma. These characteristic aroma compounds mainly derived from lean meat due to its high content of phospholipids, and the exogenous seasonings contributed to the balanced characteristic aroma profile of braised pork by altering the distribution of these characteristic aroma compounds. Variations in heating parameters affected the formation of lipid oxidation and Strecker degradation products, which might explain aroma discrepancy between braised pork cooked by two methods with different heat transfer efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.