Abstract

BackgroundAt present, the most commonly used diagnostic method of carpal tunnel syndrome (CTS) is based on clinical manifestations and electrophysiology, but the electrophysiology is not cheap, invasive, and lacks the presentation of peripheral nerve conditions, which is exactly the advantage of ultrasound (US). The purpose of this study was to evaluate the accuracy and effectiveness of US in the diagnosis of CTS by calculating the cross-sectional area (CSA) at the carpal tunnel and proximally at the level of the pronator quadratus muscle., and to find an appropriate index that can be used to achieve the diagnosis in a more cost-effective manner.MethodsForty-three wrists from 35 symptomatic CTS patients and 23 wrists from 18 asymptomatic volunteers were evaluated. Diagnosis in the CTS group was based on the American Academy of Neurology clinical diagnostic criteria. The ultrasonic probe was placed at the carpal tunnel and the distal 1/3 of the pronator muscle respectively, and the carpal tunnel cross-sectional area (CSAC) and the proximal cross-sectional area (CSAP) was calculated, with a further calculation of their difference (ΔCSA) and ratio (R-CSA).ResultsThere was a significant difference between the 2 groups regarding mean ± standard deviation (SD) of CSAC, CSAP, ΔCSA, and R-CSA (P<0.01). The cutoff value of 12.14 mm2 for CSAC had a sensitivity and specificity of 90.7% and 100%, respectively; the cutoff value of 1.235 mm2 for R-CSA had a sensitivity and specificity of 97.67% and 95.65%, respectively; and the cutoff value of 2.035 mm2 for ΔCSA had a sensitivity and specificity of 100% and 100%, respectively. Therefore, US was found to be an effective method for the diagnosis of CTS. Receiver operating characteristic curve (ROC) analysis of all patients showed area under the curve (AUC) was 0.9778 for CSAC, 0.9949 for R-CSA and 1.000 for ΔCSA.ConclusionsUS can provide reference values for the diagnosis of CTS. CSAC, ΔCSA, and R-CSA can be used for CTS diagnosis and evaluation. The ROC curve analysis showed that among the 3 values, ΔCSA was the most useful in the diagnosis of patients with CTS. ΔCSA is considered a valid diagnostic value for CTS, as its threshold of 2.04 mm2 showed the highest sensitivity and specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call