Abstract

Let $M\to N$ (resp. $C\to N$) be the fibre bundle of pseudo-Riemannian metrics of a given signature (resp. the bundle of linear connections) on an orientable connected manifold $N$. A geometrically defined class of first-order Ehresmann connections on the product fibre bundle $M\times_NC$ is determined such that, for every connection $\gamma$ belonging to this class and every $\operatorname{Diff}N$-invariant Lagrangian density $\Lambda $ on $J^1(M\times _NC)$, the corresponding covariant Hamiltonian $\Lambda ^\gamma $ is also $\operatorname{Diff}N$-invariant. The case of $\operatorname{Diff}N$-invariant second-order Lagrangian densities on $J^2M$ is also studied and the results obtained are then applied to Palatini and Einstein-Hilbert Lagrangians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.