Abstract
Let $\mathcal{G}$ be a Morse-Bott foliation on the solid Klein bottle $\mathbf{K}$ into $2$-dimensional Klein bottles parallel to the boundary and one singular circle $S^1$. Let also $S^1\widetilde{\times}S^2$ be the twisted bundle over $S^1$ which is a union of two solid Klein bottles $\mathbf{K}_0$ and $\mathbf{K}_1$ with common boundary $K$. Then the above foliation $\mathcal{G}$ on both $\mathbf{K}_0$ and $\mathbf{K}_1$ gives a foliation $\mathcal{G}'$ on $S^1\widetilde{\times}S^2$ into parallel Klein bottles and two singluar circles. The paper computes the homotopy types of groups of foliated (sending leaves to leaves) and leaf preserving diffeomorphisms for foliations $\mathcal{G}$ and $\mathcal{G}'$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.