Abstract

Transcriptional regulatory elements, including promoters and enhancers, play a key role in the cell-type specific regulation of the transcriptome. Application of rapidly evolving genetic tools, such as optogenetic/chemogenetic actuators and fluorescent reporters to elucidate the function of cell subtypes in vivo necessitates cell-type specific promoters or enhancers. In this context, methods for genome-wide functional screening of cis-regulatory elements, including enhancers, are of utmost importance. In this study, we describe a novel method for genome-wide functional screening of enhancer activity in vivo with minimal handling. Application of the method to cells from different brain structures and subsequent differential analysis allow identification of active enhancers in the target tissue or brain structures. To demonstrate proof of concept, we applied this method to samples from the dorsal raphe nucleus (DRN) and the medial prefrontal cortex of the mouse brain and successfully identified six enhancers with highly biased activity towards the dorsal raphe nucleus. Considering that these two structures consist of largely similar cell types whereas serotonin and dopamine neurons exist only in the DRN, our results confirm the validity of this method in identifying cell-type specific and brain-structure specific enhancers. Overall, this method will be helpful in identifying cis-regulatory elements suitable for cell-type specific manipulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call