Abstract

Obesity is a major risk factor for coronary artery disease, but its impact on anesthetic-induced cardioprotective actions is unexplored. We tested whether obesity inhibits anesthetic sevoflurane-induced preconditioning and whether this effect is mediated via the AMP-activated protein kinase (AMPK) signaling pathway. Sprague-Dawley rats were fed a high-fat (HF, 45% kcal as fat) or low-fat (LF, 10% kcal as fat) diet for 12 weeks. HF-fed rats developed metabolic disturbances including visceral obesity, hyperinsulinemia, hyperleptinemia and dyslipidemia. HF- or LF-fed rats subjected to 25 min of myocardial ischemia followed by 120 min of reperfusion were assigned to the following groups: control, sevoflurane preconditioning, sevoflurane plus AMPK inhibitor ara-A or AMPK activator A769662 alone. Infarct size was similar between the two control groups. Sevoflurane preconditioning significantly reduced infarct size in LF-fed rats but failed to induce cardioprotection in HF-fed rats. Phosphorylation of AMPK and endothelial nitric oxide synthase, as well as myocardial nitrite and nitrate, were also increased by sevoflurane preconditioning in LF-fed rats but not in HF-fed rats. Pretreatment with ara-A inhibited phosphorylation of AMPK and reversed sevoflurane preconditioning-induced cardioprotection in LF-fed rats, whereas it had no effects in HF-fed rats. In addition, sevoflurane preconditioning failed to enhance reactive oxygen species (ROS) generation in the myocardium of HF-fed rats compared with LF-fed rats. Direct activation of AMPK with A769662 equally increased phosphorylation of AMPK and reduced infarct size in both LF- and HF-fed rats. The results suggest that diet-induced obesity suppresses sevoflurane preconditioning-induced cardioprotective action, probably due to a diminished effect of sevoflurane preconditioning on activation of the ROS-mediated AMPK signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.