Abstract

We investigated the influence of hyperhomocysteinemia and high salt intake on sodium handling, oxidative state, vascular endothelial function and blood pressure in a rat model. Eight-week-old male Sprague-Dawley rats were divided into subgroups and maintained for 4 weeks prior to experimentation on either control chow containing 0.36% methionine and 0.5% NaCl; or one of the following modified diets containing either 0.7% methionine, 8% NaCl or 0.7% methionine + 8% NaCl. Sodium handling, homocysteine metabolism, lipid profile, NO synthesis, oxidative state, blood pressure and relaxation to acetylcholine of carotid rings were evaluated and compared. Diet-induced mild hyperhomocysteinemia (plasma homocysteine levels 1.4-fold higher than control), by itself, had no significant influence on sodium excretion, vascular endothelial function and blood pressure. Increased salt intake had no influence on homocysteine metabolism, vascular endothelial function and blood pressure. The coexistence of mild hyperhomocysteinemia and high salt intake significantly diminished vascular endothelial function (rmax to acetylcholine; control chow 83.2 +/- 6.2%, 0.7% methionine diet 74.7 +/- 3.9%, 8% NaCl diet 85.1 +/- 4.6%, 0.7% methionine + 8% NaCl diet 57.9 +/- 6.6%) but manifested no rise in blood pressure. No significant difference in oxidative state was observed in this analysis. Diet-induced mild hyperhomocysteinemia, the extent of which is comparable with the levels that are associated with a predisposition to common atherosclerotic diseases, was found to induce vascular endothelial dysfunction only when accompanied by high salt intake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.