Abstract

Fluorination is an important structural modification for ­diverse classes of bioactive organic molecules. The introduction of a fluorine atom or fluorinated group into organic molecules often changes their physical, chemical and physiological properties, resulting in greater stability and lipophilicity of the molecule. [1] Diethylaminosulfur trifluoride (DAST) is a widely used fluorinating reagent, [2-6] which is very effective for converting alcohols, ketones, aldehydes and carboxylic acids into their corresponding fluoro derivatives. This reagent has its origins in the ­pioneering work of Middleton et al. at DuPont. [7] DAST is synthesized via the substitution of a fluorine atom of ­sulfur tetrafluoride (SF4) by a diethylamino group, resulting in a powerful fluorination agent (Scheme 1). DAST presents the following advantages: the product is rela­tively easy to handle and shows good selectivity, con­sequently being less prone to formation of olefins in elimination reactions and/or rearrangement reactions. This reagent is commercially available as liquid that can be handled at room temperature and in common laboratory glassware. However, DAST is unstable above 70 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.