Abstract

Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation.

Highlights

  • Zinc is one of the most abundant trace minerals in cells, and is essential for growth and development of most organisms [1]

  • Diets were similar in all 16 to 20 carbon fatty acids. Both the zinc adequeate and zinc deficient diets contained no detectable amounts of phytic acid

  • This study has explored the implementation of an measured, potential zinc biomarker pertaining to erythrocyte fatty acid composition, the linolenic acid (LA):DGLA ratio

Read more

Summary

Introduction

Zinc is one of the most abundant trace minerals in cells, and is essential for growth and development of most organisms [1]. With 1.5–2.5 g of zinc present in the average adult [2], zinc is second only to iron in total body trace mineral content. It is found primarily in tissues such as the brain, kidneys, pancreas and liver with smaller concentrations in hair, skin and fingernails [3]. Zinc functions in the regulation of an extensive variety of genes such as those involved in nucleic acid metabolism [6], cell signaling [7,8], and apoptosis [9]. Tight regulation is accomplished by the control of zinc absorption and transport to and from the small intestine via two families of transmembrane proteins [17,18,19,20,21], solute carrier 30A (Slc30a, ZnT) and

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.