Abstract

Tea seed saponins (TSS) are oleanolane-type pentacyclic triterpenoid saponin mixtures with various pharmacological effects. We aimed to explore the effects of a total of 4 weeks intragastric administration of TSS (140 mg/kg·day) combined with aerobic exercise (AE) on lipid metabolism and its associated oxidative stress in HFD-induced obese mice and to investigate the possible molecular mechanisms. TSS + AE intervention significantly reduced body weight and the adiposity index (including subcutaneous, epididymal, perirenal, and abdominal adipose) in obese mice; improved dyslipidemia by lowering serum TC, TG, and LDL-c levels; and increased HDL-c levels. TSS + AE intervention significantly improved hepatic steatosis by inhibiting lipogenetic Acc, Srebp1c, and Scd1 and upregulating lipolysis genes (Pgc1α, Pgc1β, Pparα, and Cpt1). TSS + AE intervention increased the hepatic protein expression of p-AMPK, SIRT1, and PGC-1α, as well as PPAR-γ and GLUT-4 in skeletal muscle compared with expression in the HFD group. In addition, TSS + AE also modulated oxidative stress in obese mice, which was indicated by the increased serum and liver levels of SOD, GSH, and T-AOC and decreased ROS and MDA levels. These results suggest that TSS + AE intervention can reduce fat accumulation and improve HFD-induced lipid metabolism disorders and oxidative stress. PRACTICAL APPLICATIONS: Obesity is a metabolic disease induced by excess nutritional intake and insufficient energy expenditure. Dietary modifications combined with aerobic exercise are currently an effective method for weight loss. Tea seed saponins (TSS) are a variety of biologically active oleanolane-type pentacyclic triterpenoid saponins that naturally exist in tea seeds. Few articles have focused on the effects and mechanisms of TSS combined with aerobic exercise (AE) in regulating lipid metabolism and improving oxidative damage in vivo. Using an HFD-induced obese mice model to explore the mechanism of TSS + AE in regulating lipid metabolism and its associated oxidative stress damage will help provide reliable data for the application of dietary nutrition combined with AE in anti-obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.